INDICATION
CLOSEELIQUIS is indicated to reduce the risk of stroke and systemic embolism in patients with nonvalvular atrial fibrillation (NVAF).
ELIQUIS is indicated for the treatment of deep vein thrombosis (DVT) and pulmonary embolism (PE), and to reduce the risk of recurrent DVT and PE following initial therapy.
ELIQUIS is indicated for the prophylaxis of deep vein thrombosis (DVT), which may lead to pulmonary embolism (PE), in patients who have undergone hip or knee replacement surgery.
This site is intended for U.S. formulary decision-makers
*Optum® is a registered trademark of Optum, Inc.
IPTW=inverse probability treatment weighting; PS=propensity score.
DVT/PE=deep vein thrombosis/pulmonary embolism.
ELIQUIS increases the risk of bleeding and can cause serious, potentially fatal, bleeding.23
CRNM=clinically relevant non-major; RWD=real-world data; VTE=venous thromboembolism.
RWD=real-world data.
References
1. Katkade VB, Sanders KN, Zou KH. Real world data: an opportunity to supplement existing evidence for the use of long-established medicines in health care decision making. J Multidiscip Healthc. 2018;11:295-304.
2. Nordon C, Karcher H, Groenwold RHH, et al; GetReal consortium. The "Efficacy-Effectiveness Gap":
historical background and current conceptualization. Value Health. 2016;19(1):75-81.
doi:10.1016/j.jval.2015.09.2938
3. de Lusignan S, Crawford L, Munro N. Creating and using real-world evidence to answer questions about clinical effectiveness. J Innov Health Inform. 2015;22(3):368-373. doi:10.14236/jhi.v22i3.177
4. Kalf R, Meinecke A-K. Healthcare databases with a focus on electronic health records. RWE Navigator website. https://rwe-navigator.eu/use-real-world-evidence/sources-of-real-world-data/
healthcare-databases-with-a-focus-on-electronic-health-records. Accessed March 8, 2021.
5. Brookhart MA, Stürmer T, Glynn RJ, Rassen J, Schneeweiss S. Confounding control in healthcare database research: challenges and potential approaches. Med Care. 2010;48(60):S114-S120. doi:10.1097/MLR.0b013e3181dbebe3
6. Cox E, Martin BC, Van Staa T, Garbe E, Siebert U, Johnson ML. Good research practices for comparative effectiveness research: approaches to mitigate bias and confounding in the design of nonrandomized studies of treatment effects using secondary data sources: The International Society for Pharmacoeconomics and Outcomes Research Good Research Practices for Retrospective Database Analysis Task Force Report—Part II. Value Health. 2009;12(8):1053-1061. doi:10.1111/j.1524-4733.2009.00601
7. Brookhart MA, Wyss R, Layton JB, Stürmer T. Propensity score methods for confounding control in nonexperimental research. Circ Cardiovasc Qual Outcomes. 2013;6:604-611. doi:10.1161/CIRCOUTCOMES.113.000359.
Epub 2013 Sep 10.
8. Committee for Proprietary Medicinal Products (CPMP). Committee for Proprietary Medicinal Products (CPMP): Points to consider on adjustment for baseline covariates. Stat Med. 2004;23(5):701-709. doi:10.1002/sim.1647
9. Lip GYH, Keshishian A, Li X, et al. Effectiveness and safety of oral anticoagulants among nonvalvular atrial fibrillation patients [published correction appears in Stroke. 2020;51:e71. doi:10.0061/STR0000000000000227 and Stroke. 2020;51:e44. doi:10.00161/STR0000000000000218]. Stroke. 2018;49:2933-2944. doi:10.0061/STROKEAHA.118.020232
10. Franklin JM, Glynn RJ, Martin D, Schneeweiss S. Evaluating the use of nonrandomized real-world data analyses for regulatory decision making. Clin Pharmacol Ther. 2019;105(4):867-877. doi:10.1002/cpt.1351
11. Gant T, Crowland K. A practical guide to getting started with propensity scores. Paper 689-2017 presented at: SAS Global Forum 2017; April 2-5, 2017; Orlando, FL.
12. Delaney JAC, Seeger JD. Sensitivity analysis. In: Velentas P, Dreyer NA, Nourjah P, et al, eds. Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide. Agency for Healthcare Research and Quality (US); 2013.
13. Amin A, Keshishian A, Trocio J, et al. Risk of stroke/systemic embolism, major bleeding and associated costs in non-valvular atrial fibrillation patients who initiated apixaban, dabigatran or rivaroxaban compared with warfarin in the United States Medicare population. Curr Med Res Opin. 2017;33(9):1595-1604. doi:10.1080/03007995.2017.1345729
14. About OptumLabs and UC Health Partnership. UC Davis Health Clinical and Translational Science Center. https://health.ucdavis.edu/ctsc/area/Resource_Library/optum_uchealth.html. Accessed July 26, 2021.
15. Finding datasets for secondary analysis. Johns Hopkins University of Medicine. Updated July 26, 2021. https://browse.welch.jhmi.edu/datasets/medicare-data. Accessed July 26, 2021.
16. Weycker D, Li X, Wygant GD, et al. Effectiveness and safety of apixaban versus warfarin as outpatient treatment of venous thromboembolism in U.S. clinical practice. J Thromb Haemost. 2018;118(11):1951-1961. doi:10.1055/s-0038-1673689
17. Lip GYH, Keshishian AV, Kang AL, et al. Oral anticoagulants for nonvalvular atrial fibrillation in frail elderly patients: insights from the ARISTOPHANES study. J Intern Med. 2021;289:42-52. doi:10.1111/joim.13140
18. Yao X, Abraham NS, Sangaralingham LR, et al. Effectiveness and safety of dabigatran, rivaroxaban, and apixaban versus warfarin in nonvalvular atrial fibrillation. J Am Heart Assoc. 2016;5(6):1-18. pii: e003725. doi:10.1161/JAHA.116.003725
19. Anderson RP, Jin R, Grunkemeier GL. Understanding logistic regression analysis in clinical reports: an introduction. Ann Thorac Surg. 2003;75:753-757. doi:10.1016/s0003-4975(02)04683-0
20. White SE. Glossary. Basic & Clinical Biostatistics. 5th ed. McGraw-Hill Education; 2020.
21. StatsDirect. Cox (proportional hazards) regression.
https://www.statsdirect.com/help/Default.htm#survival_analysis/cox_regression.htm. Accessed March 8, 2021.
22. Data on file: APIX 050. Bristol-Myers Squibb Company, Princeton, NJ.
23. ELIQUIS® (apixaban) Package Insert. Bristol-Myers Squibb Company, Princeton, NJ, and Pfizer Inc, New York, NY.
24. Berger ML, Mamdani M, Atkins D, Johnson ML. Good research practices for comparative effectiveness research: defining, reporting and interpreting nonrandomized studies of treatment effects using secondary data sources: The ISPOR Good Research Practices for Retrospective Database Analysis Task Force Report—Part I. Value Health. 2009;12(8):1044-1052. doi:10.1111/j.1524-4733.2009.00600.x. Epub 2009 Sep 29.
25. Johnson ML, Crown W, Martin BC, Dormuth CR, Siebert U. Good research practices for comparative effectiveness research: analytic methods to improve causal inference from nonrandomized studies of treatment effects using secondary data sources: The ISPOR Good Research Practices for Retrospective Database Analysis Task Force Report—Part III. Value Health. 2009;12(8):1062-1073.
26. Willke RJ, Mullins CD. “Ten commandments” for conducting comparative effectiveness research using “real-world data.” J Manage Care Pharm. 2011;17(9 Suppl A):S10-S15.